介绍
简单的来讲,一款模拟器。尽管不太常见,你不能用来模拟整个程序或者系统,同时它也不支持syscall。你只能通过手动的方式来映射内存以及数据写入,然后就可以从某个指定的地址开始执行模拟了。
备忘
from unicorn import *
- 加载Unicorn库。包含一些函数和基本的常量。
from unicorn.x86_const import*
- 加载 X86 和X64架构相关的常量
所有unicorn模块中的常量
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| UC_API_MAJOR UC_ERR_VERSION UC_MEM_READ UC_PROT_ALL
UC_API_MINOR UC_ERR_WRITE_PROT UC_MEM_READ_AFTER UC_PROT_EXEC
UC_ARCH_ARM UC_ERR_WRITE_UNALIGNED UC_MEM_READ_PROT UC_PROT_NONE
UC_ARCH_ARM64 UC_ERR_WRITE_UNMAPPED UC_MEM_READ_UNMAPPED UC_PROT_READ
UC_ARCH_M68K UC_HOOK_BLOCK UC_MEM_WRITE UC_PROT_WRITE
UC_ARCH_MAX UC_HOOK_CODE UC_MEM_WRITE_PROT UC_QUERY_MODE
UC_ARCH_MIPS UC_HOOK_INSN UC_MEM_WRITE_UNMAPPED UC_QUERY_PAGE_SIZE
UC_ARCH_PPC UC_HOOK_INTR UC_MILISECOND_SCALE UC_SECOND_SCALE
UC_ARCH_SPARC UC_HOOK_MEM_FETCH UC_MODE_16 UC_VERSION_EXTRA
UC_ARCH_X86 UC_HOOK_MEM_FETCH_INVALID UC_MODE_32 UC_VERSION_MAJOR
UC_ERR_ARCH UC_HOOK_MEM_FETCH_PROT UC_MODE_64 UC_VERSION_MINOR
UC_ERR_ARG UC_HOOK_MEM_FETCH_UNMAPPED UC_MODE_ARM Uc
UC_ERR_EXCEPTION UC_HOOK_MEM_INVALID UC_MODE_BIG_ENDIAN UcError
UC_ERR_FETCH_PROT UC_HOOK_MEM_PROT UC_MODE_LITTLE_ENDIAN arm64_const
UC_ERR_FETCH_UNALIGNED UC_HOOK_MEM_READ UC_MODE_MCLASS arm_const
UC_ERR_FETCH_UNMAPPED UC_HOOK_MEM_READ_AFTER UC_MODE_MICRO debug
UC_ERR_HANDLE UC_HOOK_MEM_READ_INVALID UC_MODE_MIPS3 m68k_const
UC_ERR_HOOK UC_HOOK_MEM_READ_PROT UC_MODE_MIPS32 mips_const
UC_ERR_HOOK_EXIST UC_HOOK_MEM_READ_UNMAPPED UC_MODE_MIPS32R6 sparc_const
UC_ERR_INSN_INVALID UC_HOOK_MEM_UNMAPPED UC_MODE_MIPS64 uc_arch_supported
UC_ERR_MAP UC_HOOK_MEM_VALID UC_MODE_PPC32 uc_version
UC_ERR_MODE UC_HOOK_MEM_WRITE UC_MODE_PPC64 unicorn
UC_ERR_NOMEM UC_HOOK_MEM_WRITE_INVALID UC_MODE_QPX unicorn_const
UC_ERR_OK UC_HOOK_MEM_WRITE_PROT UC_MODE_SPARC32 version_bind
UC_ERR_READ_PROT UC_HOOK_MEM_WRITE_UNMAPPED UC_MODE_SPARC64 x86_const
UC_ERR_READ_UNALIGNED UC_MEM_FETCH UC_MODE_THUMB
UC_ERR_READ_UNMAPPED UC_MEM_FETCH_PROT UC_MODE_V8
UC_ERR_RESOURCE UC_MEM_FETCH_UNMAPPED UC_MODE_V9
|
mu = Uc(arch,mode)
- 获取Uc实例。在这里指定目标架构,例如:
mu = Uc(UC_ARCH_X86,UC_MODE_64)
- 获取X86-64架构的实例。mu = Uc(UC_ARCH_X86,UC_MODE_32)
- 获取X86-32架构的实例。
mu.mem_map(ADDRESS,4096)
- 映射一片内存区域
mu.mem_write(ADDRESS,DATA)
- 向内存中写入数据
tmp = mu.mem_read(ADDRESS,SIZE)
- 从内存中读取数据
mu.reg_write(UC_X86_REG_ECX,0X0)
- 设置ECX值。
r_esp = mu.reg_read(UC_X86_REG_ESP)
- 读取ESP的值。
mu.emu_start(ADDRESS_START,ADDRESS_END)
- 开始执行模拟。
命令追踪:
1
2
3
4
| def hook_code(mu, address, size, user_data):
print('>>> Tracing instruction at 0x%x, instruction size = 0x%x' %(address, size))
mu.hook_add(UC_HOOK_CODE, hook_code)
|
这段代码添加了一个HOOK(向Unicorn引擎中),我们定义的函数会在执行每一条命令之前被执行。参数含义如下:
- Uc实例
- 指令的地址
- 指令的长度
- 用户定义数据(通过hook_add()函数传递)
第一个例子: fibonacci
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
| #coding=utf-8
from unicorn import *
from unicorn.x86_const import *
import struct
def read(name):
with open(name, 'rb') as f:
return f.read()
def u32(data):
return struct.unpack("I", data)[0]
def p32(num):
return struct.pack("I", num)
# 为x86-64架构初始化一下Unicorn引擎。
mu = Uc (UC_ARCH_X86, UC_MODE_64)
# Uc函数需要一下参数:
# 第一个参数:架构类型。这些常量以UC_ATCH_为前缀
# 第二个参数:架构细节说明。这些常量以UC_MODE_为前缀
BASE = 0x400000
STACK_ADDR = 0x0
STACK_SIZE = 1024*1024
# mem_map: 映射内存
mu.mem_map(BASE, 1024*1024) # 初始化存储空间
mu.mem_map(STACK_ADDR, STACK_SIZE) # 初始化栈空间
mu.mem_write(BASE, read("./fibonacci")) # 加载程序
# rsp指向栈顶
mu.reg_write(UC_X86_REG_RSP, STACK_ADDR + STACK_SIZE - 1)
# 因为库函数没有加载,所以调用库函数的地方需要跳过
instructions_skip_list = [0x00000000004004EF, 0x00000000004004F6, 0x0000000000400502, 0x000000000040054F]
def hook_code(mu, address, size, user_data):
#print('>>> Tracing instruction at 0x%x, instruction size = 0x%x' %(address, size))
if address in instructions_skip_list:
mu.reg_write(UC_X86_REG_RIP, address+size)
elif address == 0x400560: #that instruction writes a byte of the flag
c = mu.reg_read(UC_X86_REG_RDI)
print(chr(c))
mu.reg_write(UC_X86_REG_RIP, address+size)
mu.hook_add(UC_HOOK_CODE, hook_code)
mu.emu_start(0x00000000004004E0, 0x0000000000400575)
|
第二个例子: 分析shellcode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
| from unicorn import *
from unicorn.x86_const import *
shellcode = "\xe8\xff\xff\xff\xff\xc0\x5d\x6a\x05\x5b\x29\xdd\x83\xc5\x4e\x89\xe9\x6a\x02\x03\x0c\x24\x5b\x31\xd2\x66\xba\x12\x00\x8b\x39\xc1\xe7\x10\xc1\xef\x10\x81\xe9\xfe\xff\xff\xff\x8b\x45\x00\xc1\xe0\x10\xc1\xe8\x10\x89\xc3\x09\xfb\x21\xf8\xf7\xd0\x21\xd8\x66\x89\x45\x00\x83\xc5\x02\x4a\x85\xd2\x0f\x85\xcf\xff\xff\xff\xec\x37\x75\x5d\x7a\x05\x28\xed\x24\xed\x24\xed\x0b\x88\x7f\xeb\x50\x98\x38\xf9\x5c\x96\x2b\x96\x70\xfe\xc6\xff\xc6\xff\x9f\x32\x1f\x58\x1e\x00\xd3\x80"
BASE = 0x400000
STACK_ADDR = 0x0
STACK_SIZE = 1024*1024
mu = Uc (UC_ARCH_X86, UC_MODE_32)
mu.mem_map(BASE, 1024*1024)
mu.mem_map(STACK_ADDR, STACK_SIZE)
mu.mem_write(BASE, shellcode)
mu.reg_write(UC_X86_REG_ESP, STACK_ADDR + STACK_SIZE/2)
def syscall_num_to_name(num):
syscalls = {1: "sys_exit", 15: "sys_chmod"}
return syscalls[num]
def hook_code(mu, address, size, user_data):
print('>>> Tracing instruction at 0x%x, instruction size = 0x%x' %(address, size))
machine_code = mu.mem_read(address, size)
if machine_code == "\xcd\x80": # int 80
r_eax = mu.reg_read(UC_X86_REG_EAX)
r_ebx = mu.reg_read(UC_X86_REG_EBX)
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
syscall_name = syscall_num_to_name(r_eax)
print "--------------"
print "We intercepted system call: "+syscall_name
if syscall_name == "sys_chmod":
s = mu.mem_read(r_ebx, 20).split("\x00")[0]
print "arg0 = 0x%x -> %s" % (r_ebx, s)
print "arg1 = " + oct(r_ecx)
elif syscall_name == "sys_exit":
print "arg0 = " + hex(r_ebx)
exit()
mu.reg_write(UC_X86_REG_EIP, address + size)
mu.hook_add(UC_HOOK_CODE, hook_code)
mu.emu_start(BASE, BASE-1) # 根据exit命令退出,直接加载整个shellcode
|
所以不仅可以直接可执行文件中的一段代码,还可以直接执行shellcode
第三个例子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
| from unicorn import *
from unicorn.x86_const import *
import struct
def read(name):
with open(name) as f:
return f.read()
def u32(data):
return struct.unpack("I", data)[0]
def p32(num):
return struct.pack("I", num)
mu = Uc (UC_ARCH_X86, UC_MODE_32)
BASE = 0x08048000
STACK_ADDR = 0x0
STACK_SIZE = 1024*1024
mu.mem_map(BASE, 1024*1024)
mu.mem_map(STACK_ADDR, STACK_SIZE)
mu.mem_write(BASE, read("./function"))
r_esp = STACK_ADDR + (STACK_SIZE/2) #ESP points to this address at function call
STRING_ADDR = 0x0
mu.mem_write(STRING_ADDR, "batman\x00") #write "batman" somewhere. We have choosen an address 0x0 which belongs to the stack.
mu.reg_write(UC_X86_REG_ESP, r_esp) #set ESP
mu.mem_write(r_esp+4, p32(5)) #set the first argument. It is integer 5
mu.mem_write(r_esp+8, p32(STRING_ADDR)) #set the second argument. This is a pointer to the string "batman"
mu.emu_start(0x8048464, 0x804849A) #start emulation from the beginning of super_function, end at RET instruction
return_value = mu.reg_read(UC_X86_REG_EAX)
print "The returned value is: %d" % return_value
|
可以通过修改内存来控制函数的调用参数
第四个例子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
| from unicorn import *
from unicorn.arm_const import *
import struct
def read(name):
with open(name) as f:
return f.read()
def u32(data):
return struct.unpack("I", data)[0]
def p32(num):
return struct.pack("I", num)
mu = Uc (UC_ARCH_ARM, UC_MODE_LITTLE_ENDIAN)
BASE = 0x10000
STACK_ADDR = 0x300000
STACK_SIZE = 1024*1024
mu.mem_map(BASE, 1024*1024)
mu.mem_map(STACK_ADDR, STACK_SIZE)
mu.mem_write(BASE, read("./task4"))
mu.reg_write(UC_ARM_REG_SP, STACK_ADDR + STACK_SIZE/2)
instructions_skip_list = []
CCC_ENTRY = 0x000104D0
CCC_END = 0x00010580
stack = [] # Stack for storing the arguments
d = {} # Dictionary that holds return values for given function arguments
def hook_code(mu, address, size, user_data):
#print('>>> Tracing instruction at 0x%x, instruction size = 0x%x' %(address, size))
if address == CCC_ENTRY: # Are we at the beginning of ccc function?
arg0 = mu.reg_read(UC_ARM_REG_R0) # Read the first argument. it is passed by R0
if arg0 in d: # Check whether return value for this function is already saved.
ret = d[arg0]
mu.reg_write(UC_ARM_REG_R0, ret) # Set return value in R0
mu.reg_write(UC_ARM_REG_PC, 0x105BC) # Set PC to point at "BX LR" instruction. We want to return from fibonacci function
else:
stack.append(arg0) # If return value is not saved for this argument, add it to stack.
elif address == CCC_END:
arg0 = stack.pop() # We know arguments when exiting the function
ret = mu.reg_read(UC_ARM_REG_R0) # Read the return value (R0)
d[arg0] = ret # Remember the return value for this argument
mu.hook_add(UC_HOOK_CODE, hook_code)
mu.emu_start(0x00010584, 0x000105A8)
return_value = mu.reg_read(UC_ARM_REG_R1) # We end the emulation at printf("%d\n", ccc(x)).
print "The return value is %d" % return_value
|
arm版本
参考链接
https://bbs.pediy.com/thread-224330.htm
http://eternal.red/2018/unicorn-engine-tutorial/#cheatsheet
https://ctf-wiki.github.io/ctf-wiki/reverse/unicorn/introduction-zh/
这里有很多代码示例:
https://github.com/unicorn-engine/unicorn/tree/master/bindings/python